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Abstract
The equations governing adiabatic and isothermal quantum processes involved
in an ideal two-state quantum heat engine are modified when the ideality
restriction is removed. We seek and study a few situations to determine the
nature and magnitude of the modifications. If one confines such systems well
within the classical turning point, we show how one can profitably employ
the Wilson–Sommerfeld quantization rule to estimate the leading correction
terms due to non-ideality. The endeavour is likely to be important in studies on
practical quantum engines.

PACS numbers: 0570, 0570C, 0365

In a recent work [1], Bender et al constructed an elegant quantum-mechanical equivalent of the
Carnot engine. It involves primarily two energy states and two key processes, one isothermal
and one adiabatic, for which appropriate definitions pertaining to the quantum domain have
been put forward. The quantum adiabatic process is governed by the property of a particular
eigenvalue, while the isothermal one is characterized by the eigenvalue spectra. The working
substance in a classical Carnot cycle is an ideal gas. In dealing with the quantum case, this
has been replaced by the particle-in-a-box (PB) model. As a result, the classical equation
governing an adiabatic process for a one-dimensional ideal gas,

PV 3 = CA (1)

where CA denotes some constant, is replaced by

F(L)L3 = CA(q) (2)

in the quantum description. Here the particle is confined in (0, L) in one dimension,
F(L) = −dE(L)/dL defines the force and CA(q) is another constant. Similarly, for the
same systems, the respective equations describing an isothermal process are

PV = CI (3)
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and

F(L)L = CI (q). (4)

Now, the point is that the Carnot engine is not a real engine; one cannot work with an
ideal gas in practical situations. Likewise, the PB system is an idealization at the quantum
level. Thus, it is difficult for the PB to model a wide variety of practical quantum heat engines.
One way to take account of some kind of non-ideality in the quantum domain is to consider
a varying potential field in (0, L). However, there is no natural system that straightforwardly
fits into the situation barring the case of the supersymmetric (SUSY) partner potential of the
PB [2]. This implies that results (2) and (4) are restrictive. Therefore, we search for a class of
non-ideal quantum systems and examine (a) how far relations (2) and (4) remain valid and (b)
under what situations we can predict the major corrections to (2) and (4). The analysis will
help us to understand quantum adiabatic and isothermal processes, as introduced in [1], in a
better way. One can also extend the original work to study real quantum heat engines via this
route.

We choose a general one-dimensional Hamiltonian

H = −d2/dx2 + v(x) (5)

to describe the system. The system, however, is confined in (0, L). This means that we have
to deal with a compressed system (see, e.g., [3] and references therein). These systems are
useful in a variety of practical cases. We shall see the importance here too, in modifying
results (2) and (4), characteristic of quantum adiabatic and isothermal processes, of arbitrary
one-dimensional Hamiltonians. One advantage is immediate in the present context. Like the
PB case, the length L can here be varied to interpret the force F(L). However, introduction
of artificial boundaries makes these systems analytically intractable. Therefore, we solve the
eigenvalue problem numerically corresponding to (5) by following a linear variational strategy
[4] for two sample cases: v(x) = x2 and v(x) = x4. To this end, the Hamiltonian matrix is
constructed by employing the PB bases in (0, L) and is then diagonalized at various L-values
of interest to obtain the relevant quantities.

First, we consider the adiabatic case. Table 1 shows a few results over a range of L-values.
Note that CA(q) is dependent on the quantum number (n) and is thus a property of an energy
eigenstate. Here we choose, as [1] did, the ground (n = 1) and first excited (n = 2) states.
We happily find from the data that for large compression (L < 1), both the systems obey (2)
reasonably, if we allow a tolerance of around 3%. They also approach the exact PB predictions
for CA(q) for states n = 1 and 2 as L decreases. Nevertheless, the error grows very rapidly
with L beyond L = 1, the more so for the lower state.

A sufficiently compressed quantum system defined by (5) will have little to contribute
beyond the classical turning point. Therefore, semiclassical and quantum predictions, which
usually differ mainly due to the quantum contribution beyond the turning point, are expected
to agree reasonably when L is considerably less than the turning point corresponding to the
uncompressed problem. As a result, it should be possible to explain semi-quantitatively the
above departure from ideality via the semiclassical Wilson–Sommerfeld (WS) quantization
rule [5]. Putting accordingly∫ L

0
(E − v(x))1/2 dx = nπ/2 (6)

with h = 2π and m = 1
2 (see equation (5)), we obtain the following result for any power-law

potential of the type v(x) = x2N :

E = (nπ/L)2 +
1

2n + 1
L2N + O(L4N+2/n2π2) LN+1 � nπ (7)
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Table 1. Departures of F(L)L3 from constancy and ideality for quantum adiabatic processes
involving x2N -type potentials in (0, L) (CA(q) = 2(nπ)2).

State

n = 1 n = 2

v(x) L F(L) F (L)L3 F(L) F (L)L3

x2 2.0 1.536 12.286 8.542 68.335
1.5 5.050 17.045 22.419 75.666
1.0 19.181 19.181 78.314 78.314
0.75 46.367 19.561 186.675 78.754
0.5 157.631 19.704 631.334 78.917
0.25 1 263.17 19.737 5 053.08 78.954
0.1 19 739.1 19.739 78 956.8 78.957

x4 2.0 0.574 4.589 4.923 39.380
1.5 4.493 15.163 21.038 71.003
1.0 19.288 19.288 78.254 78.254
0.75 46.597 19.658 186.860 78.832
0.5 157.857 19.732 631.567 78.946
0.25 1 263.30 19.739 5 053.23 78.957
0.1 19 739.2 19.739 78 956.8 78.957

and hence

F(L)L3 = CA(q) − 2N

2N + 1
L2(N+1) + · · · (8)

after some manipulations. Here CA(q) is the PB estimate of 2(nπ)2. We find now that CA(q)

decreases from its limiting, constant value. Furthermore, equation (8) shows very clearly
the N dependence of the primary correction term. It also reveals that this leading term is
independent of the quantum number. Employing (8), one can compare the WS predictions for
F(L)L3 against exact results displayed in table 1. The trend is correct; the agreement is also
remarkable, keeping in mind the restriction LN+1 � nπ . Within L = 1, we checked that the
maximum error is less than 0.6%. Choosing a more general v(x) in (5), of the form

v(x) =
∑

j

ajx
j (9)

we find in an analogous manner that

F(L)L3 = CA(q) − a1L
3/2 + · · · . (10)

Once again, the leading correction term to ideality is n-independent. The sign, however,
depends on the nature of v(x). One thus achieves the desired first-order modification to (2) in
this general situation.

Next, we consider the isothermal case. Here, we prefer to remain roughly within L = 1
so that the WS predictions retain some validity. Accordingly, we start from the ground state at
L = L1 = 0.5 and study an expansion process. Table 2 displays relevant results for x2 and x4

potentials, as before, by following the recommended strategy [1]. As L increases, probability
of the ground state |a1|2 decreases to finally become zero; but, F(L)L too is seen to gradually
reduce. It maintains constancy within 1.5% in the chosen interval. To analyse the behaviour,
we again employ (7). Conservation of average energy leads to

|a1|2 = 4
3 − 1

3 (L/L1)
2 +

L2

3π2(2N + 1)
(L2N − L2N

1 ) + · · · (11)
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Table 2. Effect of non-ideality in quantum isothermal expansion processes from the n = 1 state
involving x2N -type potentials in (0, L) (CI (q) = 8π2 in both cases).

v(x) L |a1|2 F(L)L

x2 0.5 1.0 78.816
0.6 0.8537 78.683
0.7 0.6812 78.521
0.8 0.4827 78.325
0.9 0.2583 78.091
1.0 0.0084 77.814

x4 0.5 1.0 78.928
0.6 0.8534 78.875
0.7 0.6804 78.779
0.8 0.4811 78.613
0.9 0.2560 78.342
1.0 0.0057 77.920

yielding finally

F(L)L = CI (q) +
2

2N + 1
L2N

1 − 2N + 2

2N + 1
L2N + · · · (12)

with CI (q) = 2(π/L1)
2. One can now see the effectiveness of the WS predictions. From

(11), we first note that here L2, the maximum length up to which the isothermal expansion can
continue, is greater than 2L1. At L = 2L1 = 1.0, we obtain |a1|2 from (11) to be 0.008 44 for
v(x) = x2 and 0.006 33 for v(x) = x4. The accurate values shown in table 2 are quite close.
Secondly, displayed results for F(L)L also agree with calculations based on (12) to within
0.2%. Finally, we note that (12) contains two extra terms compared with (4). Of these, the
first correction term modifies the constant, while the second one accounts for change with L.
In a general case, with v(x) given by form (9), one will find

F(L)L = CI (q) + a1L1 − 3a1L/2 + · · · (13)

in place of (12). The basic feature, however, remains the same. One extra term modifies the
constant; the other is a function of L. Thus, we obtain leading corrections to (4).

In summary, Bender et al [1], on their way to construct a quantum Carnot cycle, put
forward novel definitions of quantum adiabatic and isothermal processes. They worked
out characteristic features (namely equations (2) and (4)) of these processes too that are
central to establish the analogy sought. However, these features are ‘ideal’. Possibly
two systems, the PB and its SUSY partner, obey such features. Here we show that their
definitions apply to compressed systems as well. Thus, one can now study the above
processes in a wide variety of situations. We also outline how and when one would find
partially modified equations describing these processes when the potential in (0, L) has some
spatial dependence. We achieve this via the WS quantization rule. In studying analogies
between real heat engines and their quantum counterparts, work along similar lines may be
useful.
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